
1

1. Doc. Control 

2. Features
• CAN Protocol

– CAN used as Physical Layer

– 7 re-programmable ISP CAN identifiers

– Auto-bitrate

• In-System Programming
– Read/Write Flash and EEPROM memories

– Read Device ID

– Full chip Erase

– Read/Write configuration bytes

– Security setting from ISP command

– Remote application start command

3. Description
This document describes the “Slim” CAN boot loader functionality as well as its pro-

tocol to efficiently perform operations on the on chip Flash & EEPROM memories. 

This boot loader implements the “In-System Programming” (ISP). The ISP allows the

user to program or re-program the microcontroller on-chip Flash & EEPROM memo-

ries without removing the device from the system and without the need of a pre-

programmed application.

The CAN boot loader can manage a communication with an host through the CAN

network. It can also access and perform requested operations on the on-chip Flash &

EEPROM memories.

Boot Loader

Revision
Purpose of Modifications

Compiler

Version
Date

Rev. 1.0.0 First release - 10/02/2006

AT90CAN128

AT90CAN64

AT90CAN32

“Slim”

CAN

Boot Loader



2

AppLab–CAN–02/06

"Slim" CAN Boot Loader

4. Boot Loader Environment
The CAN AT90CAN128/64/32 boot loader is loaded in the “Boot Loader Flash Section” of the

on-chip Flash memory. The boot loader size is less than 4K bytes, so the physical “Boot Loader

Flash Section” only is half-full. The application program size must be lower or equal the “Applica-

tion Flash Section” plus 4K bytes(c.f. Table 4-1 ”Device Memory Mapping (byte addressing)” on

page 2).

Table 4-1. Device Memory Mapping (byte addressing) 

Note: 1. The “Boot Loader Reset Address” depends on the fuse bits “BOOTSZ”.

Refer to the datasheet for more details on Flash memories (Flash, EEPROM, ...) behaviors.

2. “Slim” CAN Boot Loader reset address.

4.1 Physical Environment

A generic bootloader deals with the host (or PC) through a CAN interface. The generic boot-

loader is a service able to be connected to other interfaces (LIN, RS232, SPI, TWI, ...).

Figure 4-1. Physical Environment 

Memory AT90CAN128 AT90CAN64 AT90CAN32

FLASH
Size 128 K bytes 64 K bytes 32 K bytes

Add. Range 0x00000 - 0x1FFFF 0x00000 - 0x0FFFF 0x00000 - 0x07FFF

“Application Flash

Section”

Size 120 K bytes 56 K bytes 24 K bytes

Add. Range 0x00000 - 0x1DFFF 0x00000 - 0xDFFF 0x00000 - 0x05FFF

“Boot Loader Flash

Section”

Size 8 K bytes

Add. Range 0x1E000 - 0x1FFFF 0x0E000 - 0x0FFFF 0x06000 - 0x07FFF

“Boot Loader

Reset Addresses” 
(1)

Small (1st) Boot 0x1FC00 0x0FC00 0x07C00

Second Boot 0x1F800 0x0F800 0x07800

Third Boot (2) 0x1F000 0x0F000 0x07000

Large (4th) Boot 0x1E000 0x0E000 0x06000

EEPROM
Size 4 K bytes 2 K bytes 1 K bytes

Add. Range 0x0000 - 0x0FFF 0x0000 - 0x07FF 0x0000 - 0x03FF

CAN

Generic
BOOT LOADER

ISP

Auto-bitrate

Software Tool
LIN

RS232

SPI

TWI



3

AppLab–CAN–02/06

"Slim" CAN Boot Loader

4.2 Boot Loader Description

4.2.1 Overview

Figure 4-2. Boot Loader Diagram 

4.2.2 Entry Point

Only one “Entry Point” is available, it is the entry point to the boot loader. The “BOOTRST” fuse

of the device have to be set. After Reset, the “Program Counter” of the device is set to “Boot

Reset Address” (c.f. Table 4-1 ”Device Memory Mapping (byte addressing)” on page 2). This

“Entry Point” initializes the “boot process” of the boot loader.

Entry Point

Boot

Process
Boot Appli

Protocol

Identification

LIN

CAN

CAN Init.

(Auto-bitrate)

CAN

Protocol

ISP Command

Start

Application
Yes

No

ISP

Management

Command
Start Application

F
la

s
h

L
ib

ra
ry

E
E

P
R

O
M

L
ib

ra
ry

 

IS
P

L
ib

ra
ry

 C
o

m
m

a
n

d
s
 

P
ro

to
c
o

l
 C

A
N

 

D
ri
v
e
rs

 C
A

N
 

L
ib

ra
ry

 C
A

N
 

F
la

s
h

D
ri

v
e
rs

E
E

P
R

O
M

D
ri
v
e

rs
 

RS232
SPI

TWI



4

AppLab–CAN–02/06

"Slim" CAN Boot Loader

4.2.3 Boot Process

The “boot process” of the boot loader allows to start the application or the boot loader itself. This

depends on two variables:

• The “Hardware Condition”.

The Hardware Condition is defined by a device input PIN and its activation level (Ex: 

INT0/PIND.0, active low). This is set in “config.h” file.

• The “Boot Status Byte”.

The Boot Status Byte “BSB” belongs to the “Boot Loader Configuration Memory” (c.f. Section 

5.4.4.1 ”Boot Status Byte - “BSB”” on page 9). Its default value is 0xFF. An ISP command 

allows to change its value. 

Figure 4-3. Boot Process Diagram

4.2.4 Protocol Identification

The “Protocol Identification“ of the boot loader select what protocol to use, CAN or other proto-

col. A polling of the physical lines is done to detect an activity on the media. These lines are:

• PORT_CAN_RX: The polling is be done on RXCAN/PIND.6.

• (no other interface).

A low level on PORT_CAN_RX line starts the initialization of the CAN peripheral.

Figure 4-4. Protocol Identification Diagram

RESET

PC= Boot Reset Address

Hardware

Condition

False True

BSB=0xFF BSB=0xFF

Start BOOT LOADER Start APPLICATION

Yes

NoNo

Yes

Protocol Identification Line xx 

Low Level

No

Yes

PORT_CAN_RX

Low Level

Periph. Initialization CAN Initialization

No

Yes



5

AppLab–CAN–02/06

"Slim" CAN Boot Loader

4.2.5 CAN Initialization

The CAN, used to communicate with the host, has the following configuration:

– Standard: CAN format 2.0A (11-bit identifier).

– Frame: Data frame.

– Bitrate: Depends on Extra Byte - “EB” (see “Extra Byte - “EB”” on page 10):

- “EB” = 0xFFH: Use the software auto-bitrate.

- “EB” != 0xFFH: Use CANBT[1..3] bytes to set the CAN bitrate

(see “CANBT[1..3] - “BTC[1..3]“,” on page 10).

The initialization process must be performed after each device Reset. The host initiates the com-

munication by sending a data frame to select a node. In case of auto-bitrate, this will help the

boot loader to find the CAN bitrate. The CAN standard says that a frame having an acknowledge

error is re-sent automatically. This feature and the capability of the CAN peripheral to be set in

“LISTEN” mode are used by the auto-bitrate. Once the synchronization frame is received without

any error, a recessive level is applied on the acknowledge slot by releasing the “LISTEN” mode.

The software auto-bitrate supports a wide range of baud rates according with the system clock

(CKIO) set on the device (c.f. “FOSC“ definition in “config.h “ file). This functionality is not guaran-

teed on a CAN network with several CAN nodes.

4.2.6 CAN Protocol Overview

The “CAN Protocol” is an higher level protocol over serial line (CAN Bus).

It is described in specific paragraphs in this document (See “CAN Protocol & ISP Commands” on

page 12.).

4.2.7 ISP Commands Overview

The “CAN Protocol” decodes ”ISP commands”. The set of ”ISP commands” obviously is inde-

pendent of any protocol.

It is described in a specific paragraph in this document (See “CAN Protocol & ISP Commands”

on page 12.).

4.2.8 Output From Boot Loader

The output from the boot loader is performs after receiving the ISP command: “Start Application“

(See “CAN Protocol & ISP Commands” on page 12.).



6

AppLab–CAN–02/06

"Slim" CAN Boot Loader

5. Memory Space Definition
The boot loader supports up to five (5) separate memory spaces. Each of them receives a code

number (value to report in the corresponding protocol field) because low level access protocols

(drivers) can be different.

The access to memory spaces is a byte access (i.e. the given addresses are byte addresses).

Table 5-1. Memory Space Code Numbers  

Note: 1. Sometimes, the discriminating is not physical (ex: “Signature” is a sub-set of the code of the 

boot loader Flash Section” as well as “Boot Loader Information”). 

2. New.

5.1 Flash Memory Space

The Flash memory space managed by the boot loader is a sub-set of the device Flash. It is the

“Application Flash Section”.

Table 5-2. Flash Memory Space (Code Number 0) 

Note: 1. Page parameter is different in the boot loader and in the device itself. 

5.1.1 Reading or Programming

The “ISP Read” or “ISP Program” commands only access to Flash memory space in byte

addressing mode into a page of 64K bytes (c.f. Table 5-2 ”Flash Memory Space (Code Number

0)” on page 6). Specific ISP commands allows to select the different pages.

The boot loader will return a “Device protection” error if the Software Security Byte “SSB” is set

while read or write command occurs (c.f. Section 5.4.4.2 ”Software Security Byte - “SSB”” on

page 9).

5.1.2 Erasing

The “ISP Erase” command is a full erase (all bytes=0xFF) of the Flash memory space. This

operation is available whatever the Software Security Byte “SSB” setting. A the end of the opera-

tion, the Software Security Byte “SSB” is reset to level 0 of security (Section 5.4.4.2 ”Software

Security Byte - “SSB”” on page 9).

Space (1) Code Number Access

Flash Memory 0 Read & Write

EEPROM Data Memory 1 Read & Write

- 2 -

Boot Loader Information 3 Read only

Boot Loader Configuration 4 Read & Write

Device registers (2) 5 Read only

Signature 6 Read only

Flash Memory Space AT90CAN128 AT90CAN64 AT90CAN32

Size 124 K bytes 60 K bytes 28 K bytes

Address Range 0x00000 - 0x1EFFF 0x00000 - 0xEFFF 0x00000 - 0x06FFF

Number of page(s)(1) 2 1 1



7

AppLab–CAN–02/06

"Slim" CAN Boot Loader

5.1.3 Limits

The ISP commands on the Flash memory space has no effect on the boot loader (no effect on

“Boot Loader Flash Section”).

The sizes of the Flash memory space (code number 0) for ISP commands are given in Table 5-

2 ”Flash Memory Space (Code Number 0)” on page 6.

5.2 EEPROM Data Memory

The EEPROM data memory space managed by the boot loader is the device EEPROM.

Table 5-3. EEPROM Data Memory Space (Code Number 1) 

5.2.1 Reading or Programming

The EEPROM data memory space is used as non-volatile data memory. The “ISP Read” or “ISP

Program” commands access byte by byte to this space (no paging).

The boot loader will return a “Device protection” error if the Software Security Byte “SSB” is set

while read or write command occurs (c.f. Section 5.4.4.2 ”Software Security Byte - “SSB”” on

page 9).

5.2.2 Erasing

The “ISP Erase” command is a full erase (all bytes=0xFF) of the EEPROM Data Memory space.

This operation is available whatever only if the Software Security Byte “SSB” is reset (Section

5.4.4.2 ”Software Security Byte - “SSB”” on page 9).

5.2.3 Limits

The sizes of the EEPROM Data Memory space (code number 1) for ISP commands are given in

Table 5-3 ”EEPROM Data Memory Space (Code Number 1)” on page 7.

5.3 Boot Loader Information

The Boot loader information space managed by the boot loader is included the code of the boot

loader. It is in the “Boot Loader Flash Section”.

Table 5-4. Boot Loader Information Space (Code Number 3) 

5.3.1 Reading or Programming

The “ISP Read” command accesses byte by byte to this space (no paging).

No access protection is provided on this read only space.

EEPROM Data Memory Space AT90CAN128 AT90CAN64 AT90CAN32

Size 4 K bytes 2 K bytes 1 K bytes

Address Range 0x0000 - 0x0FFF 0x0000 - 0x07FF 0x0000 - 0x03FF

Number of page(s) -- No paging -- 

Signature Space AT90CAN128 AT90CAN64 AT90CAN32

Bootloader Revision Address: 0x00 (Read only) ≥ 0x01

Boot ID1 Address: 0x01 (Read only) 0xD1

Boot ID2 Address: 0x02 (Read only) 0xD2

Number of page(s) -- No paging -- 



8

AppLab–CAN–02/06

"Slim" CAN Boot Loader

5.3.2 Erasing

Not applicable for this read only space.

5.3.3 Limits

Details on the Boot loader information space (code number 3) for ISP commands are given in

Table 5-4 ”Boot Loader Information Space (Code Number 3)” on page 7.

5.3.4 Boot Loader Information Byte Description

5.3.4.1 Boot Revision

Boot Revision: Read only address =0x00, value ≥ 0x01.

5.3.4.2 Boot ID1 & ID2

Boot ID1 & ID2: Read only addresses = 0x01 & 0x02, value = 0xD1 & 0xD2.

5.4 Boot Loader Configuration

The Boot loader configuration space managed by the boot loader is included in the “Boot Loader

Flash Section”.

Table 5-5. Boot Loader Configuration Space (Code Number 4) 

Note: 1. See “Extra Byte - “EB”” on page 10. for validity.

2. See “CANBT[1..3] - “BTC[1..3]“,” on page 10. for validity.

3. See “(CAN) Node Number - “NNB”” on page 10. for validity.

5.4.1 Reading or Programming

The “ISP Read” command accesses byte by byte to this space (no paging).

Access protection is only provided on the Software Security Byte (c.f. Section 5.4.4.2 ”Software

Security Byte - “SSB”” on page 9).

5.4.2 Erasing

The “ISP Erase” command is not available for this space. 

Signature Space AT90CAN128 AT90CAN64 AT90CAN32

Boot Status Byte  “BSB” Add.: 0x00 (default value=0xFF)

Software Security Byte  “SSB” Add.: 0x01 (default value=0xFF)

Extra Byte  “EB” Add.: 0x02 (default value=0xFF) (1)

CANBT1  “BTC1” Add.: 0x03 (default value=0xFF) (2)

CANBT2  “BTC2” Add.: 0x04 (default value=0xFF) (2)

CANBT3  “BTC3” Add.: 0x05 (default value=0xFF) (2)

Node Number  “NNB” Add.: 0x06 (default value=0xFF) (3)

CAN Re-locatable ID Segment  “CRIS” Add.: 0x07 (default value=0x00)

Start Address Low  “SA_L” Add.: 0x08 (default value=0x00)

Start Address High “SA_H” Add.: 0x09 (default value=0x00)

Number of page(s) -- No paging -- 



9

AppLab–CAN–02/06

"Slim" CAN Boot Loader

5.4.3 Limits

Details on the Boot loader configuration space (code number 6) for ISP commands are given in

Table 5-5 ”Boot Loader Configuration Space (Code Number 4)” on page 8.

5.4.4 Boot Loader Configuration Byte Description

5.4.4.1 Boot Status Byte - “BSB”

The Boot Status Byte of the boot loader is used in the “boot process” (Section 4.2.3 ”Boot Pro-

cess” on page 4) to control the starting of the application or the boot loader. If no Hardware

Condition is set, the default value (0xFF) of the Boot Status Byte will force the boot loader to

start. Else (Boot Status Byte != 0xFF & no Hardware Condition) the application will start.

5.4.4.2 Software Security Byte - “SSB”

The boot loader has the Software Security Byte “SSB” to protect itself and the application from

user access or ISP access. It protects the Flash and EEPROM memory spaces and itself.

The “ISP Program” command on Software Security Byte “SSB” can only write an higher priority

level. There are three levels of security:

Table 5-6. Security levels

The table below gives the authorized actions regarding the SSB level.

Table 5-7. Allowed actions regarding the Software Security Byte “SSB”

Level Security “SSB” Comment

0 NO_SECURITY 0xFF
- This is the default level.

- Only level 1 or level 2 can be written over level 0.

1 WR_SECURITY 0xFE

- In level 1, it is impossible to write in the Flash and 

EEPROM memory spaces.

- The boot loader returns an error message.

- Only level 2 can be written over level 0.

2 RD_WR_SECURITY ≤ 0xFC

- All read and write accesses to/from the Flash and 

EEPROM memory spaces are not allowed.

- The boot loader returns an error message.

- Only an “ISP Erase” command on the Flash memory 

space resets (level 0) the Software Security Byte.

ISP Command NO_SECURITY WR_SECURITY  RD_WR_SECURITY

Erase Flash memory space Allow Allow Allow

Erase EEPROM memory space Allow - -

Write Flash memory space Allow - -

Write EEPROM memory space Allow - -

Read Flash memory space Allow Allow -

Read EEPROM memory space Allow Allow -

Write byte(s) in Boot loader 

configuration (except for “SSB”)
Allow - -

Read byte(s) in Boot loader 

configuration
Allow Allow Allow

Write “SSB” Allow only a higher level -



10

AppLab–CAN–02/06

"Slim" CAN Boot Loader

5.4.4.3 Extra Byte - “EB”

The Extra Byte is used to switch the CAN Initialization to auto-bitrate or to fixed CAN bit timing.

– “EB” = 0xFFH: Use the software auto-bitrate.

– “EB” != 0xFFH: Use CANBT[1..3] bytes of Boot loader configuration space to set the 

CAN bit timing registers of the CAN peripheral (no auto-bitrate). 

Note: Not yet exploited. This will be done in a future boot loader version.

5.4.4.4 CANBT[1..3] - “BTC[1..3]“, 

When “EB” != 0xFFH, CANBT[1..3] bytes of Boot loader configuration space are used to set the

CAN bit timing registers of the CAN peripheral.(no auto-bitrate). 

An other way to write these byte is described in Section 5.6.4.1 ”CANBT[1..3] Registers.” on

page 11.

Note: Not yet exploited. This will be done in a future boot loader version.

5.4.4.5 (CAN) Node Number - “NNB”

See “CAN Protocol & ISP Commands” on page 12.

Note: Not yet exploited. This will be done in a future boot loader version.

5.4.4.6 CAN Re-locatable ID Segment - “CRIS”

See “CAN Protocol & ISP Commands” on page 12.

5.4.4.7 Start (application) Adress High & Low- “SA_H” & “SA_L”

See “CAN Protocol & ISP Commands” on page 12.

5.5 Signature

The Signature space managed by the boot loader is included the code of the boot loader. It is in

the “Boot Loader Flash Section”.

Table 5-8. Signature Space (Code Number 6) 

5.5.1 Reading or Programming

The “ISP Read” command accesses byte by byte to this space (no paging).

No access protection is provided on this read only space.

Read Boot loader information Allow Allow Allow

Read Signature Allow Allow Allow

Blank check (any memory) Allow Allow Allow

Changing of memory space Allow Allow Allow

ISP Command NO_SECURITY WR_SECURITY  RD_WR_SECURITY

Signature Space AT90CAN128 AT90CAN64 AT90CAN32

Manufacturer Code Address: 0x00 (Read only) 0x1E

Family Code Address: 0x01 (Read only) 0x81

Product Name Address: 0x02 (Read only) 0x97 0x96 0x95

Product Revision Address: 0x03 (Read only) ≥ 0x00 ≥ 0x00 ≥ 0x00

Number of page(s) -- No paging -- 



11

AppLab–CAN–02/06

"Slim" CAN Boot Loader

5.5.2 Erasing

Not applicable for read only space.

5.5.3 Limits

Details on the Signature space (code number 6) for ISP commands are given in Table 5-8 ”Sig-

nature Space (Code Number 6)” on page 10.

5.6 Device Registers

The device registers space managed by the boot loader is the 64 I/O registers and the 160 Ext.

I/O registers of the device. They are accessed by the equivalent assembler instruction:

LDS Rxx, REG_ADD

where REG_ADD is in the address range 0x20 (PINA) up to 0xFA (CANMSG).

5.6.1 Reading or Programming

The “ISP Read” command accesses byte by byte to this space (no paging).

No access protection is provided on this read only space.

5.6.2 Erasing

Not applicable for this read only space.

5.6.3 Limits

This space is not bit addressing and an unimplemented register returns 0xFF.

5.6.4 Device Registers Description

c.f. appropriate data sheet for information.

5.6.4.1 CANBT[1..3] Registers.

If they are read before to disable the auto-bitrate (when “EB” = 0xFFH), in the same time they

they are copied into “BTC1”, “BTC2” & “BTC3” of the Boot loader configuration space (see

“CANBT[1..3] - “BTC[1..3]“,” on page 10). 



12

AppLab–CAN–02/06

"Slim" CAN Boot Loader

6. CAN Protocol & ISP Commands
This section describes the higher level protocol over the CAN network communication and the

coding of the associated ISP commands. 

6.1 CAN Frame Description

The CAN protocol only supports the CAN standard frame (c.f. ISO 11898 for high speed and

ISO 11519-2 for low speed) also known as CAN 2.0 A with 11-bit identifier.

A message in the CAN standard frame format begins with the "Start Of Frame (SOF)", this is fol-

lowed by the "Arbitration field" which consist of the identifier and the "Remote Transmission

Request (RTR)" bit used to distinguish between the data frame and the data request frame

called remote frame. The following "Control field" contains the "IDentifier Extension (IDE)" bit

and the "Data Length Code (DLC)" used to indicate the number of following data bytes in the

"Data field". In a remote frame, the DLC contains the number of requested data bytes. The "Data

field" that follows can hold up to 8 data bytes. The frame integrity is guaranteed by the following

"Cyclic Redundant Check (CRC)" sum. The "ACKnowledge (ACK) field" compromises the ACK

slot and the ACK delimiter. The bit in the ACK slot is sent as a recessive bit and is overwritten as

a dominant bit by the receivers which have at this time received the data correctly. 

The ISP CAN protocol only uses CAN standard data frame.

Figure 6-1. CAN Standard Data Frame 

To describe the ISP CAN protocol, a symbolic name is used for Identifier, but default values are

given within the following presentation.

Table 6-1. Template for ISP CAN command 

Because in a point-to-point connection, the transmit CAN message is repeated until a hardware

acknowledge is done by the receiver.

The boot loader can acknowledge an incoming CAN frame only if a configuration is found.

This functionality is not guaranteed on a network with several CAN nodes.

Identifier

11 bits

Length

4 bits

Data[0]

1 byte
...

Data[n-1]

1 byte
Description

SYMBOLIC_NAME

(“CRIS”<<4) + x
n (≤8) Value or meaning Command description



13

AppLab–CAN–02/06

"Slim" CAN Boot Loader

6.2 CAN ISP Command Data Stream Protocol

6.2.1 CAN ISP Command Description

Several CAN message identifiers are defined to manage this protocol. 

Table 6-2. Defined CAN Message Identifiers for CAN ISP Protocol 

It is possible to allocate a new value for CAN ISP identifiers by writing the “CRIS” byte with the

base value for the group of identifier.

The maximum “CRIS” value is 0x7F and its the default value is 0x00.

Figure 6-2. Remapping of CAN Message Identifiers for CAN ISP Protocol 

6.2.2 Communication Initialization

The communication with a device (CAN node) must be opened prior to initiate any ISP commu-

nication. To open communication with the device, the Host sends a “Connecting” CAN message

(“ID_SELECT_NODE”) with the node number “NNB” passed as parameter. If the node number

Identifier ISP Command Detail Value

ID_SELECT_NODE Open/Close a communication with a node (“CRIS” << 4) + 0

ID_PROG_START Start Memory space programming (“CRIS” << 4) + 1

ID_PROG_DATA Data for Memory space programming (“CRIS” << 4) + 2

ID_DISPLAY_DATA Read data from Memory space (“CRIS” << 4) + 3

ID_START_APPLI Start application (“CRIS” << 4) + 4

ID_SELECT_MEM_PAGE Selection of Memory space or page
(“CRIS” << 4) + 6

ID_ERROR Error message from boot loader only

CAN Identifiers

0x000

0x7FF

CAN ISP Identifiers

(“CRIS”<<4)+ 0

ID_SELECT_NODE

ID_PROG_START

ID_PROG_DATA

ID_DISPLAY_DATA

ID_WRITE_COMMAND

ID_SELECT_MEM_PAGE

Group of 6 

CAN Mes-

sages Used 

to Manage 

CAN ISP 

Commands

ID_ERROR



14

AppLab–CAN–02/06

"Slim" CAN Boot Loader

passed is 0xFF then the CAN boot loader accepts the communication (Figure 6-3). Otherwise

the node number passed in parameter must be equal to the local “NNB” (Figure 6-4).

Figure 6-3. CAN Boot Loader First Connection 

Figure 6-4. CAN Boot Loader Network Connection

Before opening a new communication with another device, the current device communication

must be closed with its connecting CAN message (“ID_SELECT_NODE”).

Host

Node

“NNB”=0xFF (Default Value)

Interface Between
PC & CAN Network

In Situ Programming - ISP

Host

Node: 0

“NNB”=0x00

Interface Between
PC & CAN Network

Node: 1

“NNB”=0x01

Node: 2

“NNB”=0x02

Node: n

“NNB”=0xnn

In Application Programming - IAP



15

AppLab–CAN–02/06

"Slim" CAN Boot Loader

6.3 CAN ISP Commands

6.3.1 CAN Node Select

A CAN node must be first opened at the beginning and then closed at the end of the session.

6.3.1.1 CAN Node Select Requests from Host

Table 6-3. CAN Node Select Requests from Host 

6.3.1.2 CAN Node Select Answers from Boot Loader

Table 6-4. CAN Node Select Answers from Boot Loader 

6.3.2 Changing Memory / Page

To change of memory space and/or of page, there is only one command, the switch is made by

“Data[0]” of the CAN frame.

6.3.2.1 Changing Memory / Page Requests from Host

Table 6-5. Changing Memory / Page Requests from Host 

6.3.2.2 Changing Memory / Page Answers from Boot Loader

Table 6-6. Changing Memory / Page Answers from Boot Loader 

6.3.3 Reading / Blank Checking Memory

These operations can be executed only with a device previously open in communication. This

command is available on the memory space and on the page previously defined.

Identifier L Data[0] Description

ID_SELECT_NODE

((“CRIS”<<4)+ 0)
1 Node Number (“NNB”) Open or close communication with a specific node

Identifier L Data[0] Data[1] Description

ID_SELECT_NODE

((“CRIS”<<4)+ 0)
2

“Boot Loader

Revision”

0x00 Communication closed

0x01 Communication opened

Identifier L Data[0] Data[1] Data[2] Description

ID_SELECT_MEM_PAGE

((“CRIS”<<4)+ 6)
3

0x00

Memory

space
Page

No action

0x01 Select Memory space

0x02 Select Page

0x03 Select Memory space & Page

Identifier L Data[0] Description

ID_SELECT_MEM_PAGE

((“CRIS”<<4)+ 6)
1 0x00 Selection OK (even if “Data[0]”=0 in the request frame)



16

AppLab–CAN–02/06

"Slim" CAN Boot Loader

To start the reading or blank checking operation, the Host sends a CAN message

(“ID_DISPLAY_DATA”) with the operation required in Data[0], the start address and end

address are passed as parameters.

6.3.3.1 Reading / Blank Checking Memory Requests from Host

Table 6-7. Reading / Blank Checking Memory Requests from Host 

6.3.3.2 Reading / Blank Checking Memory Answers from Boot Loader

Table 6-8. Reading / Blank Checking Memory Answers from Boot Loader 

6.3.4 Programming / Erasing Memory

These operations can be executed only with a device previously open in communication. They

need two steps:

• The first step is to indicate address range for program or erase command.

• The second step is to transmit the data for programming only.

To start the programming operation, the Host sends a “start programming” CAN message

(ID_PROG_START) with the operation required in “Data[0]”, the start address and the end

address are passed as parameters.

6.3.4.1 Programming / Erasing Memory Requests from Host

Table 6-9. Unit. Programming / Erasing Memory Requests from Host 

Identifier L Data[0] Data[1] Data[2] Data[3] Data[4] Description

ID_DISPLAY_DATA

((“CRIS”<<4)+ 3)
5

0x00
Start Address

(MSB, LSB)

End Address

(MSB, LSB)

Display data of selected

Memory space / Page

0x80
Blank check on

selected Memory space / Page

Identifier L Data[0] Data[1] ... Data[7] Description

ID_DISPLAY_DATA

((“CRIS”<<4)+ 3)

up to 8 Up to 8 Data Bytes Data Read

0 - - - - Blank check OK

2 First not blank address - - Error on Blank check

ID_ERROR

((“CRIS”<<4)+ 6)
1 0x00 - - -

Error

Software Security Set

(“Display data” only)

Identifier L Data[0] Data[1] Data[2] Data[3] Data[4] Data[5..7] Description

ID_PROG_START

((“CRIS”<<4)+ 1)

5 0x00
Start Address

(MSB, LSB)

End Address

(MSB, LSB)
-

Init. prog. the selected

Memory space / Page

3 0x80 0xFF 0xFF - - -
Erase the selected

Memory space / Page

ID_PROG_DATA

((“CRIS”<<4)+ 2)
n data[0..(n-1)] (n≤8) Data to program



17

AppLab–CAN–02/06

"Slim" CAN Boot Loader

6.3.4.2 Programming / Erasing Memory Answers from Boot Loader

Table 6-10. Programming / Erasing Memory Answers from Boot Loader 

6.3.4.3 Programming Memory Examples

Table 6-11. Programming Memory Examples 

Figure 6-5. Result of the Above Programming Memory Example (1) 

Note: 1. AVR Studio Program Memory representation

Identifier L Data[0] Description

ID_PROG_START

((“CRIS”<<4)+ 1)
0 - Command OK

ID_PROG_DATA

((“CRIS”<<4)+ 2)
1

0x00 Command OK and end of transfer 

0x02 Command OK but new (other) data expected

ID_ERROR

((“CRIS”<<4)+ 6)
1 0x00 Error - Software Security Set (“Init. program” only)

Request/

Answer

CAN Message (hexadecimal)
Description

Identifier L Data[..70]

R (>>) 000 1 FF CAN Node Select

A (<<) 000 2 01 01 Communication opened

Default Memory space = Flash, default Page = page_0

R (>>) 001 5 00 00 02 00 12 Prog. Add 0x0002 up to 0x0012

A (<<) 001 0 0 Command OK

R (>>) 002 8 01 02 03 04 05 06 07 08 1st Data transfer 

A (<<) 002 1 02 Command OK, new data expected

R (>>) 002 8 11 12 13 14 15 16 17 18 2nd Data transfer 

A (<<) 002 1 02 Command OK, new data expected

R (>>) 002 1 20 3rd Data transfer 

A (<<) 002 1 00 Command OK, end of transfer



18

AppLab–CAN–02/06

"Slim" CAN Boot Loader

6.3.5 Starting Application

This operation can be executed only with a device previously open in communication.

To start the application, the host sends a start application CAN message with the “way of”

selected in “Data[1]”. The application can be start by a watchdog reset or by jumping to an word

address (in the Flash memory) given by SA_H & SA_L of Boot Loader Configuration Space.

No answer is returned by the boot loader.

Table 6-12. Start application Requests from Host 

Identifier L Data[0] Data[1] Data[2] Data[3] Description

ID_START_APPLI

((“CRIS”<<4)+ 4)

2
0x03

0x00 - - Start application with watchdog reset

4 0x80 0x00 0x00 Jump to address (SA_H : SA_L)



19

AppLab–CAN–02/06

"Slim" CAN Boot Loader

7. Appendix A: #define in “config.h” file

7.1 Processor Definitions
// Global

#define AVR

#define AT90CAN128  1

#define AT90CAN64   2

#define AT90CAN32   3

// Hardware condition (for boot or application start)

  // INT on DVK90CAN1 board = INT0 or PD.0 - active low with pull-up

    #define PIN_HWCB      PIND_Bit0

    #define PORT_HWCB     PORTD_Bit0

    #define LEVEL_HWCB    0           // active at "0" or "1"

    #define PULLUP_HWCB   1           // pull-up "ON"="1", "OFF"="0"

/*  // Center Key on DVK90CAN1 board = PE.2 active low with pull-up

    #define PIN_HWCB      PINE_Bit2

    #define PORT_HWCB     PORTE_Bit2

    #define LEVEL_HWCB    0           // active at "0" or "1"

    #define PULLUP_HWCB   1           // pull-up "ON"="1", "OFF"="0" */

// Application

#define USE_DEVICE   AT90CAN128

#define USE_UART1

#define FOSC         8000

// Switches for Specific definitions

#ifndef USE_DEVICE

#       error You must define USE_DEVICE AT90CAN128, AT90CAN64 or AT90CAN32 first in 
"config.h" file

#   elif USE_DEVICE == AT90CAN128

#       define MANUF_ID         0x1E        // ATMEL

#       define FAMILY_CODE      0x97        // 128 Kbytes of Flash

#       define PRODUCT_NAME     0x81        // AT90CAN family

#       define PRODUCT_REV      0x00        // rev 0

#       define FLASH_SIZE       0x1FFFF     // in bytes

#       define FLASH_PAGE_SIZE  0x100       // in bytes

#       define BOOT_SIZE        0x2000      // in bytes

#       define EEPROM_SIZE      0x1000      // in bytes

#   elif USE_DEVICE == AT90CAN64

#       define MANUF_ID         0x1E        // ATMEL

#       define FAMILY_CODE      0x96        // 64 Kbytes of Flash

#       define PRODUCT_NAME     0x81        // AT90CAN family

#       define PRODUCT_REV      0x00        // rev 0

#       define FLASH_SIZE       0x0FFFF     // in bytes

#       define FLASH_PAGE_SIZE  0x100       // in bytes

#       define BOOT_SIZE        0x2000      // in bytes

#       define EEPROM_SIZE      0x0800      // in bytes

#   elif USE_DEVICE == AT90CAN32

#       define MANUF_ID         0x1E        // ATMEL

#       define FAMILY_CODE      0x95        // 32 Kbytes of Flash

#       define PRODUCT_NAME     0x81        // AT90CAN family

#       define PRODUCT_REV      0x00        // rev 0

#       define FLASH_SIZE       0x07FFF     // in bytes

#       define FLASH_PAGE_SIZE  0x100       // in bytes

#       define BOOT_SIZE        0x2000      // in bytes

#       define EEPROM_SIZE      0x0400      // in bytes

#   else

#       error USE_DEVICE definition is not referenced in "config.h" file

#endif

#ifndef USE_UART1

#       ifndef USE_UART2

#               error You must define either USE_UART1 or USE_UART2 in

"config.h" file

#       endif

#endif

// Polling pins definition

#ifdef USE_UART1

#   define PIN_UART_RX     PINE_Bit0        // for UART0



20

AppLab–CAN–02/06

"Slim" CAN Boot Loader

#   define PORT_UART_TX    PORTE_Bit1       // for UART0

#endif

#ifdef USE_UART2

#   define PIN_UART_RX     PIND_Bit2        // for UART1

#   define PORT_UART_TX    PORTD_Bit3       // for UART1

#endif

#define PIN_CAN_RX      PIND_Bit6

#define PORT_CAN_TX     PORTD_Bit5

7.2 UART Definitions
//-------------- UART LIB CONFIGURATION ---------------

#define UART_AUTOBAUD_EXTERNAL_DETECTION

#define UART_MINIMUM

#define BDR_GENERATOR BRG_TIMER1

#define BAUDRATE    AUTOBAUD

//#define BAUDRATE    19200

#define test_hit()  uart_test_hit()

#define _getkey()   uart_getchar()

#define putchar     uart_putchar

7.3 Boot Loader Definitions
//-------------- BOOTLOADER CONFIGURATION -------------

// Uart protocol

#define PROTOCOL_DATA                   64

#define GLOBAL_BUFFER_SIZE              PROTOCOL_DATA+4

#define NB_BYTE_MAX_FOR_DISPLAY_COMMAND 64

#define HEX_SIZE_DISP_PAGE              16

#define USE_RCS_HEX_PROTOCOL

#define USE_RCS_CAN_PROTOCOL

//----------- Bootloader identification definition ----

#define BOOT_VERSION    0x01 // @00  // Ver 01: JT-18.10.05

#define BOOT_ID1        0xD1 // @01

#define BOOT_ID2        0xD2 // @02

#define MAX_OFFSET_ID   0x7F0

#define NO_SECURITY     0xFF

#define RD_WR_SECURITY  0xFC

#define BSB_DEFAULT     0xFF

#define SSB_DEFAULT     0xFF

#define EB_DEFAULT      0xFF

#define NNB_DEFAULT     0xFF

#define CRIS_DEFAULT    0xFF   // if (offset_id_copy>MAX_OFFSET_ID) offset_id_copy=0;

#define BTC1_DEFAULT    0xFF

#define BTC2_DEFAULT    0xFF

#define BTC3_DEFAULT    0xFF

#define SSB_RD_PROTECTION 0xFC

#define SSB_WR_PROTECTION 0xFE

7.4 Memory Definitions
//-------- Memory Definition -----------------

#define MEM_USER                0

#define MEM_CODE                0

#define MEM_FLASH               0

#define MEM_EEPROM              1

#define MEM_CUSTOM              2

#define MEM_BOOT                3   // Boot information

#define MEM_XAF                 4   // Boot configuration

#define MEM_SIGNATURE           6

#define MEM_DEFAULT MEM_FLASH

#define PAGE_DEFAULT  0x00



21

AppLab–CAN–02/06

"Slim" CAN Boot Loader

8. Appendix B: CAN Protocol Summary

Table 8-1. CAN Protocol Summary - Requests from Host 

Table 8-2. CAN Protocol Summary - Answers from Boot Loader

ISP Command Request

Identifier
L

Data

[0]

Data

[1]

Data

[2]

Data

[3]

Data

[4]

Data

[5]

Data

[6]

Data

[7]
Description

ID_SELECT_NODE

((“CRIS”<<4)+ 0)
1 Node - - - - - - - Open or close communication 

ID_PROG_START

((“CRIS”<<4)+ 1)

5 0x00 Start Address End Address - - - Initialization of programming

3 0x80 0xFF 0xFF - - - - - Erasing

ID_PROG_DATA

((“CRIS”<<4)+ 2)
n data[0..(n-1)] (n≤8) Data to program

ID_DISPLAY_DATA

((“CRIS”<<4)+ 3)
5

0x00
Start Address End Address

- - - Display (read) data

0x80 - - - Blank check

ID_START_APPLI

((“CRIS”<<4)+ 4)

2
0x03

0x00 - - - - - - Start Application with reset

4 0x01 0x0000 - - - - Start Application jump add. 0

ID_SELECT_MEM_PAGE

((“CRIS”<<4)+ 6)
3

0x00

Memory

space
Page

- - - - - No action

0x01 - - - - - Select Memory space

0x02 - - - - - Select Page

0x03 - - - - - Select Memory space & Page

ISP Command Answer

Identifier
L

Data

[0]

Data

[1]

Data

[2]

Data

[3]

Data

[4]

Data

[5]

Data

[6]

Data

[7]
Description

ID_SELECT_NODE

((“CRIS”<<4)+ 0)
2

Boot 

loader

revision

0x00 - - - - - - Communication closed

0x01 - - - - - - Communication opened

ID_PROG_START

((“CRIS”<<4)+ 1)
0 - - - - - - - - Command OK

ID_PROG_DATA

((“CRIS”<<4)+ 2)
1

0x00 - - - - - - - Cmd. OK & end of transfer

0x02 - - - - - - - Cmd. OK & new data expected

ID_DISPLAY_DATA

((“CRIS”<<4)+ 3)

n data[0..(n-1)] (n≤8) Data Read

0 - - - - - - - - Blank check OK

2 1st Failed Address - - - - - - Error on Blank check

ID_SELECT_MEM_PAGE

or ID_ERROR

((“CRIS”<<4)+ 6)

1 0x00 - - - - - - -
Selection OK or

Error Software Security Set


